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Abstract. Time series data mining is a relatively new sub-area of data
mining, in which the temporal dimension of data introduces new challen-
ges for classification and clustering tasks. The huge amount of informa- .
tion contained in temporal databases requires efficient representations,
not only to reduce dimensionality, but also to preserve the relevant infor-
mation for efficient classification. Many approaches have been proposed
to represent temporal data in a discrete form. However, most of them are .
oriented to data compression, rather than to information maximization.
In this work we propose new time series discretization algorithm called
EBLA2. The basic idea behind EBLA2 is to minimize the entropy of the
temporal patterns over their class labels after finding 2 minimum set of
intervals from which the continuous values of the temporal database can
be discretized. Under a similar approach, the algorithm is able to find -
the minimum time series length to represent the complete time series
database. : .

1 Introduction

The measurement of observations that evolve over time is becoming a very com-
mon task duc to the huge amount of applications that produce this kind of data;
for example, in medical or industrial applications. Unfortunatcly, temporal data
produces enormous databases that require efficient representations, not only to
reduce dimensionality, but also to preserve the relevant inforiation for efficient
classification. Morcover, most of the algorithms for classification work only with
discrete data [10). Many approaches have been proposed to represent temporal
data [8][6], all of them arc oricnted to data compression, rather than to informa-
tion maximization; that is to say, those representations transform times serics
of length IV, into a sct of n cocfficients, where n < N . These data compression
processcs arc only intended to reduce dimensionality of the data. However, they
do not take in account if the new representation preserves the relevant informa-
tion to maintain the membership of the observations to the label class associated
to cach one. Discretization algorithms which maximize information on data will
improve the cfficiency of classifications tasks performed on it, and also conld be
uscd as a featurce detection tools [4].
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In most of the algorithms proposed to discretize time series, the user requires
to specify a set of parameters to perform the transformation; for example, the
number of segments (word size) to divide the times series length, and the number
of intervals (alphabet) required to compress the time series valucs. Without a
previous analysis of the temporal data, it is very difficult to know the proper
parameter valucs to obtain a good discrete representation of data. However, in
practice it is assumed that the parameters are known.

In the present work, we propose a new algorithm for time series database
discretization called EBLA2 (Entropy Based Linear Approximation). Under this
approach the data transformation is done in a supervised fashion. The goal is
to find the minimum word size and alphabet size, and the range values for
cach interval which minimize the entropy of the discrete representation with
respect on the class label of the database. The content of the paper is presented
as follows: in section 2 the related work is discussed. Section 3 describes the
proposal and main concepts involved in its definition. In section 4 the algorithm
EBLA2 is cxplained in detail. Section 5 describes the experiments carried out
and the data used to cvaluate the performance of the algorithm. Section 6 shows
the results obtained over the experiments. Section 7 presents a discussion, and
finally in section 8, conclusions and future work are presented.

2 Related work and motivation

Based on the divergence of Kullback-Leibler, in [9] a time scries discretization
method is proposed, the core of the algorithm is to detect the persistent sta-
tes on the time series that consist of recurring persistent states produced by
an underlying process, this is a unsupervised method because does not require
specification of class label. The applicability of this method is restricted to the
existence of persistent states in the time series, something that is not very com-
mon in most of real applications. The persistent algorithm processes a single
time series at a time, then the discretization criterion is not generalized to the
complete dataset.

Dimitrova et al (2], using different approach represents time series as a multi-
connected graph; under this representation, similar time series arc grouped into
a graph model. The algorithm focuses on minimizing the number of connected
nodes (graph) to represent a model time series under different criterion based
on Single-Link Clustering (SLC) algorithm, plus one criterion to consider the
entropy to determine which arcs on the graph to be deleted. Each node in the
graph represent one point in the time series. The main drawback of this algo-
rithm is then its computational complexity (O(MN*),where N is the number
of nodes and M is the number of time series contained on the database) that
makes it difficult to apply on big datascts.

More recently, an algorithm called Symbolic Aggregate Approximation (SAX)
has been proposed [8]. This algorithm is based the Piecewise Aggregate Approxi-
mation representation [1]. SAX algorithm requires the user to definc an alphabet
(A) with fixed interval ranges and a word size (W's) as parameters. After a nor-
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malization procedure, times series length is partitioned into (W's) segments, the
corresponding values are mapped to one of A discrete values through thc usc
of a normal probability density function (PDF). One advantage of this repre-
sentation is that, once the dataset has been transformed, a smoothed version
of the original data can be recovered using the PDF. Although SAX has becn
created for streaming data, it has proved to be an cfficient representation for
classification and clustering. However, as SAX works in a unsupcrvised fashion.
it does not take advantage of class labels to improve classification performance.
The present work, responds to the necessity of having an algorithm that not only
discretizes temporal databases in order to reduce dimensionality, but also that
automatically determines the reduction scale of the time series (word size) and
the number of intervals (and its different ranges) that maximize the classification
accuracy. The proposed algorithm EBLA2, takes as antecedent the discretiza-
tion algorithm Class-Attribute Interdependence Maximization (CAIM) reported
in [6]. CAIM algorithm works with static data in a supervised approach, the main
idea of CAIM is to keep the interdependence relationship between attributes and
class labels using a proposed information gain metric, called CAIM measure. In
a similar way, EBLA2 proposes a metric to define an equivalent mcasurc for
time series discretization, it uses information gain measured in terms of entropy.
For dimensionality reduction the algorithm takes as an antecedent the time se-
ries representation Piecewise Aggregate Approximation (PAA)[1], it consists of
obtaining the mean values of a predefined segment over the time series. In the
following section a complete description of the proposal is introduced.

3 Proposal

Discretization is concerned the process to map variables with continuous valucs
into discrete values. This process has been widely used to compress data to
facilitate computation in terms of space and time. More formally given the data
domain z|z € R, where R is the set of reals and the discretization scheme(D)
D = {[dp,d1], (d1,da), - (dn—1,dn]} Where do and the d;, are the minimum and
maximum valuc of z respectively. Every pair of values represents an interval,
one of each maps the specific range of continuous values to one clement of a
discrete set {1..m}. Where m is called the discretization degree and d;|i = 1..n
are the interval limits, also know as a cut points [6]. Discretization process can
be split in two main jobs. The first one is to find the number of discrete groups
to do the mapping from continuous to discrete. The second onc is to definc the
range or limits of each interval in the continuous domain [6]. Both jobs arc donc
by EBLA2 using a principle of information gain based on entropy. The aim of
the algorithm is to find the number of intervals, and their limits from which the
membership of the resulting discrete models are clustered with respect to the
class label. As explained in the following section, the discretization scheme is
computed for the whole datasct, i.c. all the time series values arc considered to
find the discretization scheme with minimum entropy.
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Although it is almost the same process, for the sake of clarity we have divided
the time series discretization in two phases . The first is to find the alphabet size
and the second is to find the word size. On each phase the objective is not only
to find the number of discretization values, but also the range of the interval.
It can be thought of as a discretization on both axis, z and y respectively, sce
figurc 1 . EBLA2 is based on PAA representation, which consists in obtaining
the mean values of cach segment in which the time series is divided.

3.1 Dimensionality reduction

A simple and efficient time series representation is Piecewise Aggregate Appro-
ximation (PAA), where each segment has equal size and the number of segments
is determined for user. Often, a priori information is not available, so the goal is
to find the number of intervals with different size for reduction of dimensionality
at the same time as maintaining the information with respect to the class label.
Let C be a time series with length n represented in a w-dimensional space (word)
as a vector C =Ty, ...,Cy. and T = {t;, 1, ..., tw} be the discretization scheme
where t, is the interval of time of i segment of C. Where the i element of C,is
computed as:
Ity
1

&= mn 2.0y : (1)

i=1

where: |¢;| is the number of elements of ¢;. Figure 1 shows a continuous time series
Sy|si € R,i = 1..300 and its corresponding discrete representation Salses i =18
(word size =3), with D = {[co,c1],...(cq, 5]} where ¢g = —10,...c5 = 60. As
shown in figurc 1, every single value is mapped to one out of three discrete valucs,
according to the intervals found by the algorithm [co, al=1,..,(cs,c5] =5 (see
horizontal doted lines), and intervals time T = {t1,t2,t3} where t; = [1,66],
ta = [67,150], t3 = [151,300] (sce vertical doted lines)

w 5 D
TS length ( word size )

Fig. 1. Time series representation. Raw data S is represented in EBLA2 as Sq={4,5,2}

3.2 Utility Measure

Most discretization algorithms require heuristics to avoid the a priori definition
of the alphabet size. For example, in temporal databases, the 1nform§t19n cri-
terion and [2], and the persistence score [9], information entropy maximization
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(IEM), information gain, maximum entropy, Petterson-Niblett and Minimum
Description Length (MDL) [6],[3] has been used. In the present work, the pro-
posed criterion to select the optimal cut points is based on the information gain
measure, defined for a specific discretization scheme and its corresponding class
labels. Formally, the information gain based on entropy can be stated as:

S,
Gain(S. A) = Entropy(S) — E L;S Entropy(S.) (2)
wEA

n

Where: S and A are two different set time series.
A E G e A Na d (An \ o i =1n
#8, is the number of time series with value v in S
#5 is the number of time series in S

The entropy of S is given by:

Entropy(S) = Z —pi log2 pi (3)

i=1

Where: ¢ is_ the number of classes.
p; is the probability of class 7 in ;
The entropy of S when it takes the value S, is

Entropy(S.y) = Y p(S|v): loga p(S|v): (4)

i=1

Where: ¢ is the number of classes.
p(S|v); is the conditional probability of class ¢ in .S given a time series with value

Because it is possible to find different cut points with equal information gain,
we propose to aggregate one term to the selection criterion. This new term is
a heuristic to sclect one of the tied candidates, this term biases the sclection
to those cut points that generates higher different time series patterns given a
discretization scheme. In other words, it prefers a discretization schemes which
generate morc isolated temporal patterns. This metric is computed as follows:
let #S be the number of time series and A, the number of dilferent time series:

AN
logo#S (r)
#S

Isolated_term =

#S remains constant for a given dataset. A, change for different discretization
scheme as it can be seen in (eq. 2). When A, increases the isolated term increases
and when decreased isolated term too.

The Isolated term can be weighted by an alpha coefficient to modulate its
influence over the entire weight. The behavior of the isolated term in a database

with 500 instances is shown in figure 2.
The goodness of a cut point is given by the sum of terms (eq. 2) and (eq. 5)

Utility = Gain + Isolated.term (6)

It is important to remark that the entire time scries is considered as one attri-
bute, and that the discretization scheme is considered for the whole databasc. It
allows the algorithm to find a good global solution, that minimizes the entropy
on data.
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Fig. 2. Isolated term behavior. Cut points which discernes higher amounts of observa-
tions are better ranked

4 Algorithm

Under the utility measure (eq. 6) explained above, the time series discretization
process can be thought of as the search on the space of all possible discretiza-
tion schemes. The discretization problem on time series can be divided into two
subproblems, the first onc is to find the number and range of intervals of time
that maintain the relevant information (alphabet), and the second is the discre-
tization of data on cach interval of time (word size). EBLA2 has been designed
to solve both problems. A discretization scheme is conformed by a set of inter-
vals defined by the cut points. In order to sclect each interval to be included in
the discretization scheme, a set of prospectus cut points has to be created and
cvaluated. Some algorithms for discretization of static data, like CAIM [6], use
to create the group of cut point candidates as the middle points of the different
adjacent values contained in all existing continuous values (sec figure 3).
To do this job, on the first itcration the algorithm searches for a cut point
. (between the minimum value and the maximum value contained all over the
continuous range of the time series values) with maximum utility in terms of
formula (6). Once the first cut point is found (CPS;), the first discretization
scheme is constructed as D = {[minvalue, CPS,], (CPS;, mazvalue]}. On the
sccond iteration, a new cut point is searched in the range between the minimum
valuc and the previous found cut point (CPS;) and also between the previous
found cut point and the maximum value. Only if the new cut point found has
a bigger utility than the utility reached in the previous iteration, the new cut
point is inserted to form a new discretization scheme D = {[minvalue, CPS],
(CPSy,CPS,), (CPS,, mazvaluel}. It is important to note, that on every single
itcration a new sct of utility values is generated. The iterative process continues
until the new cut point docs not produce a utility improvement. The cut point
sclection explained above can be extremely expensive, considering that a con-
tinuous attribute could have a huge number of different values. and that many
of them could be very similar. A more efficient approach used in this work is,
instead to use all the different values, to form representative values computed
as percentiles. On the present algorithm we evaluate the cut points locating the
percentiles defined from 0.0% to 100% on increments of 0.1%.
On the second phase of the discretization process (word size computation),
the cut points represent intervals of time, and then are intended, to reduce the
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Fig. 3. Cuts point selection. (a) Cut points obtained in the first iteration D =
{[minvalue, CPS1], (CPS,, mazvalue]} (b) Discretization scheme obtained on the se-
cond iteration D = {[minvalue, CPS1], (CPS,,CPS:), (CPS,, mazvalue]}

time series length. This process consists in joining adjacent intervals keeping the
information gain. The utility is computed in the same way as computed to find
the alphabet, but in this casc instead to add cut points , the objective is to delete
cut points. The starting cach point of time series is considered as a cut point and
the job is to delete as much cut points as accessible keeping the classification
accuracy rcached on the previous phase (alphabet computation), a cut point is
consider every single observation on the time series. Using an iterative approach,
the entropy is computed for every deleted point. At the end of this cycle, the
cut point with more information is deleted and the cycle continues until a new
delete cut point does not improve the entropy. In this case point selection is
made finding which prospect to eliminate from all prospectus cut points. This
process can be though of as the elimination of those observation that does not
affect the classification performance.

It is important to sce, that this second phase has to be donc after to find the
best alphabet, having in mind to reduce the time series length preserving the
relevant information on data. The pseudocode of the EBLA2 algorithm is shown
below.

First phasc:

VD = sort(Unique(S,))
C = Percentiles(V D)
MiddlePoints = ¥ Size€-1 ZitCix1
i 2
B = min(C) U maz(C
GlobalUtility = 0
L, = —inf
While L, > GlobalUtility and not empty(C)
L=1{}
forcachc € Cand c ¢ B
L = LU FUtility(D(S,T,G(B U {c})))
b = maz;(L) //Index of value maximum of L
if L, > GlobalUtility
B=BlUg
GlobalUtility = L,
C=C\{a}
return B

Where S = {s;|s; € R,i = 1..n} represents the numeric values of a time scrics
S with length n. Sy, is the sct of p time series. T = {t;|¢ = 1.7} is the temporal
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scheme with 7 intervals of time is divided. C = {C € R,k = 1..m} is the set
of m prospectus cut points. G is a function for generating one discretization
scheme E, given a set of limits B. B = {C,|C, € C} is a cut points sct on C.
E = {(By-1, By)|By > By-1b = 2..g+1}is a discretization scheme of length g. D
is a discretization function to transform the set S, into a discrete form given a
discretization scheme. FU'tility is the utility value of D computed as described
in (cq. 6). In the first phase the process starts using a discretization scheme: The
value of T contains all the intervals of the complete time series.

On the first phase, the algorithm starts using a discretization scheme with
a unique interval. Iteratively, the algorithm increments the number of intervals
using the cut point selection procedure described above. The stop criterion was
defined when the addition of a new cut point does not provide an improvement
in terms of information gain. Specifically, in our implementation we used the
difference of (eq. 6) at a consecutive iterations evaluated as:

Utilityl(rruli(lﬂ < Utilitytlrr"ll()ll—l

Sccond phase:
C={2,.,n}
T={1...n}
GlobalUtility = FUtility(D(S, T, G(B)))
L, = inf
While min(L,) >= GlobalUtility and not ecmpty(C)

L={}

forcach c € Cand c € B
L = LU FUtility(D(S. H(T, c), G(B)))
end
b = maa,(L) //Index of value maximum of L
if min(L,) >= GlobalUtility and not cmpty(C)
T = -H(T; L) :
return T

In the sccond phase, the algorithm joins the consecutive bits of the time serics
in the following way : Let H(P,p) be a function that joins (with the left interval
of p) two adjacent intervals of p in P . It is important to remember that the
value of B (alphabet) was computed in the previous phase.

5 Experiments

The performance of the algorithm was tested using twenty databases available on
the time series classification/clustering WEB page (www.cs.ucr.edu/ eamonn/
time_serics_data), sce five first columns in table 1.

Different time series representations have been evaluated using these databa-
scs [?]. It is important to remark that most of these representations have been
developed to compress data, rather that to improve classification performance.
One of the most efficient representation recently proposed is Symbolic Aggre-
gatc Approximation (SAX)(8]. Although SAX representation has been designed
to discretize time series for strcaming data purposes, it has shows a good perfor-
mancc on classification and clustering tasks. Because as far as we know at the
time at which this work was developed there was no a representation specifically
designed to optimize classification performance, the performance of EBLA2 was
compared to those results obtained by SAX.
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Table 1. Databases properties, alphabet and word sizes obtained for EBLA2

DataSet Num. Size Size Length Word Alphabet
Classes training testing TS Size Size
50Words 50 450 455 270 40 2
Adiac 37 390 391 176 90 9
Beef 5 30 30 470 23 3
CBF 3 30 900 128 64 2
Coffee 2 28 28 286 75 3
ECG200 2 100 100 96 48 2
Fish 7 175 175 463 119 3
Face(All) 14 560 1690 131 33 3
Face(Four) 4 24 88 350 45 2
Gun Point 2 50 150 150 24 2
Lighting 2 2 60 61 637 80 2
Lighting 7 T 70 73 319 81 2
Osu Leaf 6 200 242 427 54 2
Olive Oil 4 30 30 570 287 3
Swedish Leaf 15 500 625 128 67 5
Trace 4 100 100 275 144 3
Two Pattern 4 1000 4000 128 64 2
Control Chart 6 300 300 60 30 3
Wafer 2 1000 6174 152 91 15
Yoga 2 300 3000 426 119 3

5.1 Classification

One nearest neighbor (INN) was used as a classification method. Error rate
was computed using Leave-One-Out Cross Validation (LOO). The discretiza-
tion scheme was obtained over the training set of data. The similarity mcasure
used in 1-NN, to cvaluate the EBLA2 algorithm was the Euclidean distance.
Classification performance was also cvaluated using the raw data (continuous
time serics). It is important to remark to SAX uses its own similarity measure

[8]. SAX similarity measure is defined as: Let Q and C be the SAX discrete
representation of time series @ and C. Let w be the word size. dist function is
a specific defined similarity measure defined by SAX to decodec the SAX repre-

sentation [8].

— [
MINDIST(Q,C) = \/Eq Y (dist(d., ¢:))? (7)
i=1

6 Results

Results of the data reduction alphabet and word size obtained automatically
after to applying EBLA2 to 20 database are shown in the 6th and 7th column of
table 1. The results obtained showed that EBLA2 representation nceds smaller
alphabets that SAX rcpresentation to obtain similar error rates. Figurc 4 shows
crror rates obtained on the twenty database, on the graph is observed that most
of the cases EBLA2 reached error rate smaller than those obtained by SAX using
the same paramecters (alphabet size and word size).



Entropy Based Linear Approximation Algorithm for Time Series Discretization 223

7 Discussion

Gencrally speaking, error rates reached using EBLA2 representation were smaller
that those obtained by SAX tested using the same paramcters (word size and

alphabet size), however higher alphabet sizes on SAX obtains smaller error rates
than EBLA2.

Error Rate
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Fig. 4. Error rate obtain for EBLA2 and SAX using the parameters suggested by
EBLA2. Error rate reached using raw data is shown as well

This scems to indicate that EBLA2 finds a local minimum derived of its
greedy approach. In order to solve this, aleatory movements to be required to
implement at the beginning of the search. The proposed discretization approach
used by EBLA2 is an efficient technique to automatically compute the parameter
for discretization(alphabet and word size), reaching competitive error rates. This
characteristic makes EBLA2 very useful because some times it is very difficult to
know a priori a good combination of alphabet and word size for a given dataset.

8 Conclusions and future work

In the present work a new algorithm for supervised discretization on time se-
rics data called EBLA2, has been proposed. Given a labeled dataset containing
temporal data, EBLA2 algorithm automatically computes not only the alphabet
sizc but also the limits which define the continuous intervals of cach alphabet
letter. EBLA2 also computes the number and sizes of the intervals to define the
time series length. The approach proposed in this work is to evaluate different
discretization schemes trying to minimize their associated entropy with respect
to the class labels.

The efficiency of the algorithm was evaluated using twenty databases and
compared to one of the more efficient time series discretization algorithm called
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SAX and raw data. Generally, error rates reached using EBLA2 representation
were smaller that those obtained by SAX tested using the same parameters
(alphabet and word size). The advantage that EBLA2 does not requires a priori
parameter because they are automatically calculated.

Although SAX was not developed for supervised discretization, we decided
to comparc EBLA2 with SAX becausc at the time of this publication, there was
no algorithm available for supervised discretization of time series, and because
SAX is one of the most efficient algorithms proposed so far.

An extension of the algorithm can be to change the stop criteria using a fun-
ction that weights the ratio alphabet/word size to find a compromisc between
both. Finally it is important to rcmark that using EBLA2 approach, the rcpre-
sentation generated can be used as a feature selection tool, since the cntropy
of cach segment of the time scrics can be calculated and used to identify the
segments that provides more information to develop the classification.
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